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Recent speaker background

 Cleveland Clinic

— Using semantic web technology to produce data from
patient records for outcomes research and reporting

« PanGenX
— Enabling personalized medicine




Semantic integration problem
-

 Many data sources, many applications

* Many technologies and protocols

- Each application wants the illusion of a single, unified
data source
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Simplified(!) monthly report pipeline

patientRecords

augmentedRecords

processedRecords
cohortSelection
SAS-analysis report-2011-jan

- Multiple data sources - diverse formats / vocabularies

transformedLabData

- Multiple data production stages

« Multiple consuming applications
— Overlapping but differing needs




The job is not done after conversion to RDF!

* Pipeline is still needed within RDF
— Transforming between ontologies
— Harmonizing the RDF

— Inferencing

* Too inefficient to use one big monolithic graph
- E.g., 200k patient records, 80M triples

* Pipeline can operate on nhamed graphs
— Easier to manage
— Facilitates provenance
— More efficient to update
* E.g., each patient record is a graph




RDF Pipeline framework

Open source project “RDF Pipeline”
— http:/icode.google.com/p/rdf-pipeline/
— Currently in POC

Data production pipeline framework based on
wrappers

Pipeline of nodes is described in RDF
— A data dependency graph

Each node implements one processing stage



http://code.google.com/p/rdf-pipeline/

Example pipeline . ..

patientRecords

augmentedRecords

processedRecords
cohortSelection
w report-2011-jan

transformedLabData
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... and RDF description

@prefix p: <http:/ipurl.orglpipelinelont#> .
@prefix : <http:/llocalhost/> .
:patientRecords a p:Node .

:labData a p:Node .
:transformedLabData a p:Node ;

p:inputs ( :labData ) .

:augmentedRecords a p:Node ;
p:inputs ( :patientRecords :transformedLabData ) .
:processedRecords a p:Node ;

p:inputs ( :augmentedRecords ) .
:report-2011-jan a p:Node ;

p:inputs ( :processedRecords ).
:sasAnalysis a p:Node ;

p:inputs ( :processedRecords ).
:cohortSelection a p:Node ;

p:inputs ( :augmentedRecords ) .
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How to use the RDF Pipeline framework

1. Provide an updater for each node
— Any language, any data (assuming a wrapper is available)
— Any kind of processing
— Generates the output of the node from its inputs

2. Put your updaters where wrappers can find them
3. Describe your pipeline in RDF

— Inputs
— Updaters

Done!
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Updater invocation

patientRecords

augmentedRecords

processedRecords
cohortSelection
@ report-2011-jan

- Data updates automatically propagate through the pipeline
— Think “Make” or “Ant” — dependency graph

transformedLabData

- Updater is run depending on node's updater policy
- E.g., Lazy, Eager, Periodic, etc.

- Wrappers take care of this
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Example wrapper types

FileNode:

— Invoked as a shell command
— Inputs/output are files

SparqlGraphNode:
— Invoked as a SPARQL update
— Inputs/output are named graphs
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Logical view - Inter-node communication

Nodes pass data from one to another. ..
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Physical view - Unoptimized
W HTTP X
-

* Wrappers handle inter-node communication
* By default, nodes use HTTP
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Physical view - Optimized

Environment 1 Environment 2
o —
W
Native
ﬂ access

 Nodes that share an implementation environment
communicate directly, using native access, e.g.:
— One SparqlGraphNode to another in the same RDF store

Native
access

— One FileNode to another on the same server

« Very efficient
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Why the RDF Pipeline framework?

Easy to create & maintain
— No API
— Easy to visualize

— Very loosely coupled

Flexible

— Data agnostic

— Programming language agnostic
Efficient

— Decentralized

— Data updates propagate automatically
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Pattern: SPARQL as a rules language

SPARQL can be used as a rules language
— CONSTRUCT or INSERT

— If the WHERE clause is satisfied, new triples are asserted
Not recursive, but still convenient

Simplifies development and maintenance

— Same language as for queries

INSERT is more efficient than CONSTRUCT

— CONSTRUCT involves an extra client round-trip, as results
are returned

— INSERT operates directly within the RDF store
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Need for virtual graphs

* Dynamic combination of named graphs

* E.g., if myVirtualGraph includes graphl, graph2,
graph3 then:
SELECT .
FROM VIRTUAL myVirtualGraph
WHERE .

would be equivalent to:
SELECT .
FROM NAMED graphl
FROM NAMED graph2
FROM NAMED graph3
WHERE .
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URI versioning

The dilemma: Change the URIs? Or change the
semantics?

— Changing URIs hurts apps that don't understand the new
URIs

— Changing semantics hurts apps that depended on stable
semantics

Point 1: Publish your URI versioning policy!

Point 2: In RDF, old and new URIs can coexist
peacefully
— Data can use both old and new URIs
— |l.e., data can be monotonic
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Validation in the open world
Producers Consumers

\ T

Two roles: data producer and data consumer

Multiple data producers, multiple consumers
In RDF, extra data should not disturb existing data

How to validate?
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Validation in the open world (cont.)
Producers Consumers

\ T

Two kinds of validation needed:
— Model integrity (defined by the producer)
* Does the data contain what the producer promised?
— Suitability for use (defined by the consumer)

* Does the data contain what this consumer expects?

Each producer can supply a validator for data it provides

Each consumer can supply a validator for data it expects

SPARQL ASK can be used as validator language
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Questions?
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Wrapper responsibilities

Inter-node communication
— HTTP or native

Node invocation
— Per update policy

Caching
Serializing for HTTP transmission
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