Semantic Web Application Patterns:
Pipelines, Versioning and Validation

David Booth, Ph.D. (Consultant)
<david@dbooth.org>

W3C Linked Enterprise Data Patterns Workshop
7-Dec-2011

Please download the latest version of these slides:
http://dbooth.org/2011/ledp/

http://www.w3.org/2011/09/LinkedData/
http://dbooth.org/2011/ledp/

Recent speaker background

 Cleveland Clinic

— Using semantic web technology to produce data from
patient records for outcomes research and reporting

« PanGenX
— Enabling personalized medicine

Semantic integration problem
-

 Many data sources, many applications

* Many technologies and protocols

- Each application wants the illusion of a single, unified
data source

Semantic integration strategy
C

Semantic
Data
Integration

L Ontologies
& Rules
1. Data production pipeline

2. Use RDF in the middle; Convert to/ffrom RDF at the edges
3. Use ontologies and rules for semantic transformations

V@

Semantic integration strategy
C

Semantic
Data
Integration

L Ontologies
& Rules
1. Data production pipeline

2. Use RDF in the middle; Convert to/ffrom RDF at the edges
3. Use ontologies and rules for semantic transformations

V@

Simplified(!) monthly report pipeline

patientRecords

augmentedRecords

processedRecords
cohortSelection
SAS-analysis report-2011-jan

- Multiple data sources - diverse formats / vocabularies

transformedLabData

- Multiple data production stages

« Multiple consuming applications
— Overlapping but differing needs

The job is not done after conversion to RDF!

* Pipeline is still needed within RDF
— Transforming between ontologies
— Harmonizing the RDF

— Inferencing

* Too inefficient to use one big monolithic graph
- E.g., 200k patient records, 80M triples

* Pipeline can operate on nhamed graphs
— Easier to manage
— Facilitates provenance
— More efficient to update
* E.g., each patient record is a graph

RDF Pipeline framework

Open source project “RDF Pipeline”
— http:/icode.google.com/p/rdf-pipeline/
— Currently in POC

Data production pipeline framework based on
wrappers

Pipeline of nodes is described in RDF
— A data dependency graph

Each node implements one processing stage

http://code.google.com/p/rdf-pipeline/

Example pipeline . ..

patientRecords

augmentedRecords

processedRecords
cohortSelection
w report-2011-jan

transformedLabData

© © N O G s 0NN

R R R R R R R
o o0k WD RO

... and RDF description

@prefix p: <http:/ipurl.orglpipelinelont#> .
@prefix : <http:/llocalhost/> .
:patientRecords a p:Node .

:labData a p:Node .
:transformedLabData a p:Node ;

p:inputs (:labData) .

:augmentedRecords a p:Node ;
p:inputs (:patientRecords :transformedLabData) .
:processedRecords a p:Node ;

p:inputs (:augmentedRecords) .
:report-2011-jan a p:Node ;

p:inputs (:processedRecords).
:sasAnalysis a p:Node ;

p:inputs (:processedRecords).
:cohortSelection a p:Node ;

p:inputs (:augmentedRecords) .

10

How to use the RDF Pipeline framework

1. Provide an updater for each node
— Any language, any data (assuming a wrapper is available)
— Any kind of processing
— Generates the output of the node from its inputs

2. Put your updaters where wrappers can find them
3. Describe your pipeline in RDF

— Inputs
— Updaters

Done!

11

Updater invocation

patientRecords

augmentedRecords

processedRecords
cohortSelection
@ report-2011-jan

- Data updates automatically propagate through the pipeline
— Think “Make” or “Ant” — dependency graph

transformedLabData

- Updater is run depending on node's updater policy
- E.g., Lazy, Eager, Periodic, etc.

- Wrappers take care of this

12

Example wrapper types

FileNode:

— Invoked as a shell command
— Inputs/output are files

SparqlGraphNode:
— Invoked as a SPARQL update
— Inputs/output are named graphs

13

Logical view - Inter-node communication

Nodes pass data from one to another. ..

14

Physical view - Unoptimized
W HTTP X
-

* Wrappers handle inter-node communication
* By default, nodes use HTTP

15

Physical view - Optimized

Environment 1 Environment 2
o —
W
Native
ﬂ access

 Nodes that share an implementation environment
communicate directly, using native access, e.g.:
— One SparqlGraphNode to another in the same RDF store

Native
access

— One FileNode to another on the same server

« Very efficient

16

Why the RDF Pipeline framework?

Easy to create & maintain
— No API
— Easy to visualize

— Very loosely coupled

Flexible

— Data agnostic

— Programming language agnostic
Efficient

— Decentralized

— Data updates propagate automatically

17

Semantic integration strategy
C

Semantic
Data
Integration

L Ontologies
& Rules
1. Data production pipeline

2. Use RDF in the middle; Convert to/from RDF at the edges
3. Use ontologies and rules for semantic transformations

V@

18

Semantic integration strategy
C

Semantic
Data
Integration

L Ontologies
& Rules
1. Data production pipeline

2. Use RDF in the middle; Convert to/ffrom RDF at the edges
3. Use ontologies and rules for semantic transformations

V@

19

Pattern: SPARQL as a rules language

SPARQL can be used as a rules language
— CONSTRUCT or INSERT

— If the WHERE clause is satisfied, new triples are asserted
Not recursive, but still convenient

Simplifies development and maintenance

— Same language as for queries

INSERT is more efficient than CONSTRUCT

— CONSTRUCT involves an extra client round-trip, as results
are returned

— INSERT operates directly within the RDF store

20

Need for virtual graphs

* Dynamic combination of named graphs

* E.g., if myVirtualGraph includes graphl, graph2,
graph3 then:
SELECT .
FROM VIRTUAL myVirtualGraph
WHERE .

would be equivalent to:
SELECT .
FROM NAMED graphl
FROM NAMED graph2
FROM NAMED graph3
WHERE .

21

URI versioning

The dilemma: Change the URIs? Or change the
semantics?

— Changing URIs hurts apps that don't understand the new
URIs

— Changing semantics hurts apps that depended on stable
semantics

Point 1: Publish your URI versioning policy!

Point 2: In RDF, old and new URIs can coexist
peacefully
— Data can use both old and new URIs
— |l.e., data can be monotonic

22

Validation in the open world
Producers Consumers

\ T

Two roles: data producer and data consumer

Multiple data producers, multiple consumers
In RDF, extra data should not disturb existing data

How to validate?

23

Validation in the open world (cont.)
Producers Consumers

\ T

Two kinds of validation needed:
— Model integrity (defined by the producer)
* Does the data contain what the producer promised?
— Suitability for use (defined by the consumer)

* Does the data contain what this consumer expects?

Each producer can supply a validator for data it provides

Each consumer can supply a validator for data it expects

SPARQL ASK can be used as validator language

24

Questions?

25

Wrapper responsibilities

Inter-node communication
— HTTP or native

Node invocation
— Per update policy

Caching
Serializing for HTTP transmission

26

Wrapper responsibilities

Inter-node communication
— HTTP or native

Node invocation
— Per update policy

Caching
Serializing for HTTP transmission

27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

