

RDF as <u>the</u> Healthcare Interchange Language

Charles Mead, M.D., MSc., CoChair W3C Healthcare Life Sciences Work Group

21st-Century "Personalized Medicine"

Used by permission: National Cancer Institute Cancer Bioinformatics Grid (caBIG)

Barriers to Achieving Computable Semantic Interoperability ("sharing semantics")

- Non-semantic
 - Representation technologies and traceability gaps (design-time)
 - Serialization brittleness(run-time)
 - Implementation technology diversity
- Semantic
 - Lack of "layered" standards
 - "Semantic overlap" at standards' boundaries

Non-Semantic Barriers to Achieving CSI

- Representation technologies and traceability gaps (design-time)
 - UML separation of views of instances from views of classes →
 modeling of domain content (instance data and schema/metadata) is often
 difficult for domain experts
 - Fido a dog
 - Dog rdf:subClassOf Mammal
 - UML tools non-standard mechanisms for associating exemplar but unbounded value sets with class attributes
- Requirements-to-Design-to-Implementation traceability is difficult
 - Disconnect between analysis-level definitional semantics and their computational "equivalence" when traced through design-time logical and run-time physical representations.

Non-Semantic Barriers to Achieving CSI(2)

- Serialization brittleness(run-time)
 - XML nested structure can obscure semantic equivalence
 - Simple example: Students, Classes, Teachers
 - Necessitates one-off Xpath, XSLT transforms for semantic alignment
- Implementation technology diversity
 - Different physical data models and/or access technologies for same schema
 - E.G. raison d'être for CDISC ODM exchange standard (XML)

Why RDF?

Semantics as a First-Class Citizen

 Representation of data (and metadata) in a RDF-based graph eliminates the problem of "semantics wrapped in syntactic structures"

 Application of Linked Data Best Practices increases the value of data (and metadata) in both intranet- and internet-based communities.

Semantics as a First-Class Citizen (2)

- Use of Semantic Web technologies does not magically solve core issues of semantic ambiguity or cross-graph disagreement.
 - Those issues must still be addressed through person-to-person/organization-to-organization dialogue.
- Use of SW technologies does, however, enable bottom-up harmonization/semantic resolution
 - Siloed ontology development if more amenable to harmonization than traditional RDBMS or XML siloed development

Information Models and Terminology Models: *The Perfect World*

"Grade IV anaphylactic reaction to Penicillin injection." (HL7 Reference Information Model and SNOMED-CT)

http://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/TermInfo

Information Model

Common Structures for Shared Semantics

Binding/Interface

Terminology Model

Domain-Specific Terms
specifying
Domain-Specific Semantics

http://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/TermInfo

Information Models and Terminology Models: The Real World (TermInfo problem)

Information Model

Common Structures
for
Shared Semantics

Binding/Interface

Terminology Model

Domain-Specific Terms specifying Domain-Specific Semantics

Information Model

Common Structures
bound to
Domain-Specific Structures
specifying
Domain-Specific Semantics

Terminology Model

Domain-Specific Terms
specifying
Domain-Specific Semantics

TermInfo Example

http://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/TermInfo

- Clinical observation: "Grade IV anaphylactic reaction to a penicillin injection."
 - Representation using HL7 Reference Information Model (RIM) and SNOMED-CT terminology
 - RIM is an "cross-domain information model"
 - "compositional" capability based on use of instances of Act and ActRelationship
 - SNOMED-CT is a "healthcare terminology model"
 - "compositional" capability based on concatenation of multiple "atomic" terms from multiple "axes."

TermInfo Example (2)

http://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/TermInfo

- The semantic boundary between the RIM and SNOMED is not "clean" → multiple representations of the same semantics
 - Complex RIM model with atomic SNOMED code bindings
 - Simple RIM model with complex SNOMED code bindings
 - Continuum of possibilities between these two extremes
 - Although all representations are "semantically equivalent" from a clinical perspective, they are not *a priori* CSI because of serialization differences
- SW "solution" to the problem involves identifying and expressing the "overlapping semantic boundaries"
 - RIM ontology
 - SNOMED ontology
 - RIM-SNOMED cross ontology "boundary" mapping

The Semantic Web Value Proposition

- Common "design-time" and "run-time" representation (RDF graph patterns)
 - Eliminates "impedance mismatch" that often occurs between these two contexts
- Semantics as a "first-class citizen"
 - Reduces technology barriers
 - SPARQL end-points (a broadly-applicable standard) to query RDBMS (and other) persistence layers
 - Reduces syntax and lexical barriers
 - Single RDF model and syntax → technology-independent schema → serialization brittleness
 - Enables solutions to semantic CSI barriers
 - Layered metadata
 - Overlapping standards' boundaries

The Semantic Web Value Proposition(2)

- Tools and infrastructure designed to promote reuse, discovery, amalgamation, harmonization of data and meta-data from multiple contexts
 - "Point-wise" (bottom-up) semantic harmonization
 - Decentralized extensibility
 - Reuse made easy: "Interoperability emerges from laziness..."
- Significant amount of work already done in TMC domains

Healthcare Standards and RDF... plus a few examples

- SALUS project <u>https://github.com/srdc</u>
- CDISC2RDF http://cdisc2rdf.com
- HL7 Reference Information Model –
 http://www.hl7.org/special/committees/projman/searchableprojectindex.cfm?
 action=edit&ProjectNumber=983
- BRIDG Model www.bridgmodel.org
- HCLS demo projects
 - http://www.w3.org//2013/02/ODM/
 - http://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/TermInfo
 - http://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/TermInfo
 - http://www.w3.org/2013/05/11179/
 - http://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability -

