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RDF is

fundamentally different
from other data formats – XML, JSON, etc.

This presentation explains why.

But first, some background . . .
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Comparing RDF with XML or JSON

WARNING: Improper comparison!

• XML, JSON or any other format could be 
used in special ways to achieve all of 
RDF's features
– But that isn't how they are normally used

• This talk compares RDF with XML and 
JSON as they are normally used
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What is RDF?

• "Resource Description Framework"
– But think "Reusable Data Framework"

• Language for representing information

• Vendor-neutral international standard by W3C

• Mature – 10+ years

• Used in many domains, including biomedical 
and pharma
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ex:patient319 foaf:name "John Doe" .
ex:patient319 v:systolicBP ex:obs_001 .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

RDF graph

Patient319 has name "John Doe".
Patient319 has systolic blood pressure observation Obs_001.
Obs_001 value was 120.
Obs_001 units was mmHg.

English assertions:

RDF* assertions ("triples"): RDF graph:

*Namespace definitions omitted



What is RDF good for?

• Large-scale information integration

• Semantically connecting diverse data models 
and vocabularies

• Translating between data models and 
vocabularies

• Smarter data use

Let's see why . . .



Key things you need to know about RDF

#5: RDF is self describing
– RDF uses URIs as identifiers

#4: RDF is easy to map from other data representations
– RDF data is made of assertions

#3: RDF captures information – not syntax
– RDF is format independent

#2: Multiple data models and vocabularies can be easily 
combined and interrelated

– RDF is multi-schema friendly

#1: RDF enables smarter data use and automated data translation
– RDF enables inference
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#5: RDF is self describing

• RDF uses URIs as identifiers

• Terms, data models, properties, 
vocabularies, etc. – almost everything
– E.g., identifier for aspirin:

<http://www.drugbank.ca/drugs/DB00945> 

• URIs can be abbreviated:
@prefix db: <http://www.drugbank.ca/drugs/> .
. . .  db:DB00945  . . .



Example: URI for Aspirin

http://www.drugbank.ca/drugs/DB00945 

http://www.drugbank.ca/drugs/DB00945
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Why is this important?

• Enables unambiguous identifiers without the 
bottleneck of central control
– New URIs can be created by any party

• Web friendly: URI can link to an authoritative 
definition

• Linking to definition is a best practice – not 
an RDF requirement
– A/k/a "Linked Data"



What if the URI cannot be 
dereferenced?

• Then the definition must be found some other way
– (Just as with current medical codes)
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Why is this important?

• Terms in a vocabulary can be self-describing
– Authoritative definition can be easily located
– Reduces ambiguity

• For standard terms this is a convenience
• For non-standard terms:

– Enables definition to be found by any party
– Aids in bootstrapping new terms toward standardization

Supports standards and diversity
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Terms are self describing?

• XML:   
– Can be just as good as RDF if 

namespaces are properly used
– In practice, namespaces are not always used 

or clickable to definitions

• JSON: 
– In theory, could be used like RDF
– In practice, almost never done 

✔

½
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#4: RDF is easy to map from other data 
representations

• RDF is made up of lots of small, atomic 
statements, called assertions or triples

• Each assertion is a triple, like 
subject-verb-object of a simple sentence

• Set of assertions is called an RDF graph
– Nodes are subjects and objects
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Single RDF assertion / triple

Patient319 has name "John Doe".

Subject Verb Object

English:

ex:patient319 foaf:name "John Doe" .

Subject Predicate* Object**

RDF:

*A/k/a property or relation
**A/k/a value

RDF graph:Patient319 has name "John Doe".

Subject Verb
phrase

Object

English:

ex:patient319 foaf:name "John Doe" .

Subject Predicate* Object**

RDF:
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ex:patient319 foaf:name "John Doe" .
ex:patient319 v:systolicBP ex:obs_001 .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

RDF assertions form graphs

Patient319 has name "John Doe".
Patient319 has systolic blood pressure observation Obs_001.
Obs_001 value was 120.
Obs_001 units was mmHg.

English assertions:

RDF assertions ("triples"): RDF graph:



17

Why does this matter?

• Easy to represent any data

• Easy to incorporate any data model
– Hierarchical, relational, graph, etc.

Great for data integration!
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Hierarchical data model in RDF
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Relational data model in RDF

ID fname addr

7 Bob 18

8 Sue 19

See W3C Direct Mapping of Relational Data to RDF:
http://www.w3.org/TR/rdb-direct-mapping/ 

ID City State

18 Concord NH

19 Boston MA

People Addresses

http://www.w3.org/TR/rdb-direct-mapping/
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Why does this matter?

• Easy to map any data format to RDF
– E.g., XML, JSON, CSV, SQL tables, etc.
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Easy to map from other formats?

• XML:   
– Except cyclic graphs

• JSON: 
– Except cyclic graphs

✔
✔
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#3: RDF captures information 
– not syntax

• RDF is format independent

• There are multiple RDF syntaxes: Turtle, 
N-Triples, JSON-LD, RDF/XML, etc.

• The same information can be written in 
different formats
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RDF examples

Same information!

RDF (Turtle)
@prefix ex: <http://example/ex/> .
@prefix loinc: <http://loinc.org/> .
@prefix v: <http://example/v/> .

ex:obs_001 a v:Observation ;
 v:code loinc:3727­0 ;
 v:display "BPsystolic, sitting" ;
 v:value 120 ;
 v:units v:mmHg .

RDF graph

RDF (N-Triples)
<http://example/ex/obs_001> <http://www.w3.org/1999/02/22­rdf­syntax­ns#type> <http://example/v/Observation> .
<http://example/ex/obs_001> <http://example/v/code> <http://loinc.org/3727­0> .
<http://example/ex/obs_001> <http://example/v/display> "BPsystolic, sitting" .
<http://example/ex/obs_001> <http://example/v/value> "120"^^<http://www.w3.org/2001/XMLSchema#integer> .
<http://example/ex/obs_001> <http://example/v/units> <http://example/v/mmHg> .
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RDF examples
RDF (JSON-LD)

{
  "@id": "http://example/ex/obs_001",
  "@type": "http://example/v/Observation",
  "http://example/v/code": {
    "@id": "http://loinc.org/3727­0"
  },
  "http://example/v/display": "BPsystolic, sitting",
  "http://example/v/units": {
    "@id": "http://example/v/mmHg"
  },
  "http://example/v/value": 120
}

RDF graph

RDF (RDF/XML)
<?xml version="1.0" encoding="utf­8"?>
<rdf:RDF xmlns:ex="http://example/ex/" xmlns:loinc="http://loinc.org/" 
      xmlns:rdf="http://www.w3.org/1999/02/22­rdf­syntax­ns#" xmlns:v="http://example/v/">
  <rdf:Description rdf:about="http://example/ex/obs_001">
    <rdf:type rdf:resource="http://example/v/Observation"/>
  </rdf:Description>
  <rdf:Description rdf:about="http://example/ex/obs_001">
    <v:code rdf:resource="http://loinc.org/3727­0"/>
  </rdf:Description>
  <rdf:Description rdf:about="http://example/ex/obs_001">
    <v:display>BPsystolic, sitting</v:display>
  </rdf:Description>
  <rdf:Description rdf:about="http://example/ex/obs_001">
    <v:value rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">120</v:value>
  </rdf:Description>
  <rdf:Description rdf:about="http://example/ex/obs_001">
    <v:units rdf:resource="http://example/v/mmHg"/>
  </rdf:Description>
</rdf:RDF>

Same

info!



Why does this matter?

• Emphasis is on the meaning (where it 
should be)

• RDF can be used to capture the meaning 
of other data formats/languages: 
– Any data format can be mapped to RDF to 

capture its meaning
– RDF acts as a substrate language
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Different source languages, same RDF

OBX|1|CE|3727­0^BPsystolic, 
sitting||120||mmHg|

<Observation 
      xmlns="http://hl7.org/fhir">
   <system value="http://loinc.org"/>
   <code value="3727­0"/>
   <display value="BPsystolic, sitting"/>
   <value value="120"/>
   <units value="mmHg"/>
</Observation>

HL7 v2.x FHIR

RDF graph

Maps to

Maps to
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Why does this matter?

• Precise meaning of data in other 
languages/formats can be captured in a 
consistent, format-independent way

• Important for data integration
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Captures meaning, not syntax?

• XML:   
– Syntax only

• JSON: 
– Syntax only

✘

½
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#2: Multiple data models and 
vocabularies can be easily combined 

and interrelated

• RDF is multi-schema friendly*
– (In this talk, schema == data model,

i.e., the shape of the data)

• Multiple data models/schemas and 
vocabularies can peacefully co-exist, 
semantically connected

*A/k/a schema-promiscuous, schema-flexible, schema-less, etc.
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Multi-schema friendly

• Blue App has model

Country Address FirstName LastName Email

City ZipCode

Blue Model



31

Multi-schema friendly

• Red App has model

HomePhone Town ZipPlus4 FullName Country

Red Model
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Multi-schema friendly

• Merge RDF data

• Same nodes (URIs) join automatically

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue Model

Country
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Multi-schema friendly

• Add relationships and rules

• (Relationships are also RDF)

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue Model

Country

subClassOf

sameAs
hasLast

hasFirst
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Multi-schema friendly

• Later add Green model
(Using Red & Blue models)

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

Country

subClassOf

sameAs
hasLast

hasFirst

Multiple models peacefully coexist
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Multi-schema friendly

• What the Blue app sees:

– No difference!

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

CountryCountry Address FirstName LastName Email

City ZipCode

Blue Model

Country
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Multi-schema friendly

• What the Red app sees

– No difference!

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

CountryHomePhone Town ZipPlus4 FullName Country

Red Model
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Multi-schema friendly

• What the Green app sees

– No difference!

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

CountryHomePhone Town ZipPlus4 Country FirstName LastName Email

Green Model

Country
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Why is this important?

• Multiple data models and vocabularies can be:
– added dynamically

– used together harmoniously

• This is critical in domains that involve many or changing data 
models/vocabularies
– E.g., standard + non-standard models/vocabularies

• Even standards are not static! 
– Standards are continually revised or they become obsolete

Unified Medical Language System (UMLS) includes over 100 
standard vocabularies and millions of concepts!
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Easy to merge data?

• XML:   
– Schemas compete to be "on top"
– Meaningful merge requires new schema and 

manual mapping

• JSON: 
– A little easier than with XML
– But meaningful merge still requires new model 

and manual mapping

✘
✘



#1: RDF enables smarter data use and 
automated data translation

• RDF enables inference

• Inference derives new assertions from old
– "Entailments"



Inference example

• If you know:
?x a v:MitralValve .
v:MitralValve rdfs:subClassOf v:HeartValve .

• Then you can infer:
?x a v:HeartValve .



Why is this important?

• Smarter queries and data use
– Query for v:HeartValve surgeries can find 

v:MitralValve surgeries
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Inference example: sameAs

• If you know: Town

• You can infer: City (or vice versa)

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

subClassOf

sameAs
hasLast

hasFirst
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Inference example: composition

• If you know: FirstName + LastName

• You can infer: FullName

– But not necessarily vice versa

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

subClassOf

sameAs
hasLast

hasFirst
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Facilitates smarter queries?

• XML:   
– No inference

• JSON: 
– No inference

✘
✘



Why is this important?

• Data can be automatically transformed 
between different data models and 
vocabularies
– E.g., db:DB00945 => v:aspirin
– Red Model data + Blue Model data => Green 

Model data

Very helpful for data integration!
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Inference example: 
data transformation

• If you know: Red Model data + Blue Model data

• You can infer: Green Model data

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

Country



48

Facilitates data transformations?

• XML:   
– Not by inference, but tools are 

available

• JSON: 
– Not by inference, but tools are 

available ½

½
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Weaknesses of RDF

• RDF tools are less mature; 
expertise is less widespread

• RDF has some annoyances:
– "Blank nodes" have subtleties that add 

complication  (Best to limit their use)
– URI allocation – can be a hassle

• Weaknesses should be understood, but are 
not show stoppers



Conclusions

• RDF provides key benefits that distinguish it from 
other frequently used information representations

• RDF is best for problems that involve:
– Large-scale information integration

– Semantically connecting diverse vocabularies and 
data models

– Changing vocabularies and data models

– Inference and information transformation
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Questions?
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BACKUP SLIDES



Key things you need to know about RDF

#5: RDF is self describing
– RDF uses URIs as identifiers

#4: RDF is easy to map from other data representations
– RDF data is made of assertions

#3: RDF captures information – not syntax
– RDF is format independent

#2: Multiple data models and vocabularies can be easily 
combined and interrelated

– RDF is multi-schema friendly

#1: RDF enables smarter queries and automated data translation
– RDF enables inference
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