
Key Things You Need to Know About RDF
and Why They Are Important

David Booth, Ph.D.
Hawaii Resource Group

david@dbooth.org

Semantic Technology and Business Conference
21-Aug-2014

Latest version of these slides:
http://dbooth.org/2014/key/

mailto:david@dbooth.org
http://dbooth.org/2014/key/

2

RDF is

fundamentally different
from other data formats – XML, JSON, etc.

This presentation explains why.

But first, some background . . .

3

Comparing RDF with XML or JSON

WARNING: Improper comparison!

• XML, JSON or any other format could be
used in special ways to achieve all of
RDF's features
– But that isn't how they are normally used

• This talk compares RDF with XML and
JSON as they are normally used

4

What is RDF?

• "Resource Description Framework"
– But think "Reusable Data Framework"

• Language for representing information

• Vendor-neutral international standard by W3C

• Mature – 10+ years

• Used in many domains, including biomedical
and pharma

5

ex:patient319 foaf:name "John Doe" .
ex:patient319 v:systolicBP ex:obs_001 .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

RDF graph

Patient319 has name "John Doe".
Patient319 has systolic blood pressure observation Obs_001.
Obs_001 value was 120.
Obs_001 units was mmHg.

English assertions:

RDF* assertions ("triples"): RDF graph:

*Namespace definitions omitted

What is RDF good for?

• Large-scale information integration

• Semantically connecting diverse data models
and vocabularies

• Translating between data models and
vocabularies

• Smarter data use

Let's see why . . .

Key things you need to know about RDF

#5: RDF is self describing
– RDF uses URIs as identifiers

#4: RDF is easy to map from other data representations
– RDF data is made of assertions

#3: RDF captures information – not syntax
– RDF is format independent

#2: Multiple data models and vocabularies can be easily
combined and interrelated

– RDF is multi-schema friendly

#1: RDF enables smarter data use and automated data translation
– RDF enables inference

8

#5: RDF is self describing

• RDF uses URIs as identifiers

• Terms, data models, properties,
vocabularies, etc. – almost everything
– E.g., identifier for aspirin:

<http://www.drugbank.ca/drugs/DB00945>

• URIs can be abbreviated:
@prefix db: <http://www.drugbank.ca/drugs/> .
. . . db:DB00945 . . .

Example: URI for Aspirin

http://www.drugbank.ca/drugs/DB00945

http://www.drugbank.ca/drugs/DB00945

10

Why is this important?

• Enables unambiguous identifiers without the
bottleneck of central control
– New URIs can be created by any party

• Web friendly: URI can link to an authoritative
definition

• Linking to definition is a best practice – not
an RDF requirement
– A/k/a "Linked Data"

What if the URI cannot be
dereferenced?

• Then the definition must be found some other way
– (Just as with current medical codes)

12

Why is this important?

• Terms in a vocabulary can be self-describing
– Authoritative definition can be easily located
– Reduces ambiguity

• For standard terms this is a convenience
• For non-standard terms:

– Enables definition to be found by any party
– Aids in bootstrapping new terms toward standardization

Supports standards and diversity

13

Terms are self describing?

• XML:
– Can be just as good as RDF if

namespaces are properly used
– In practice, namespaces are not always used

or clickable to definitions

• JSON:
– In theory, could be used like RDF
– In practice, almost never done

✔

½

14

#4: RDF is easy to map from other data
representations

• RDF is made up of lots of small, atomic
statements, called assertions or triples

• Each assertion is a triple, like
subject-verb-object of a simple sentence

• Set of assertions is called an RDF graph
– Nodes are subjects and objects

15

Single RDF assertion / triple

Patient319 has name "John Doe".

Subject Verb Object

English:

ex:patient319 foaf:name "John Doe" .

Subject Predicate* Object**

RDF:

*A/k/a property or relation
**A/k/a value

RDF graph:Patient319 has name "John Doe".

Subject Verb
phrase

Object

English:

ex:patient319 foaf:name "John Doe" .

Subject Predicate* Object**

RDF:

16

ex:patient319 foaf:name "John Doe" .
ex:patient319 v:systolicBP ex:obs_001 .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

RDF assertions form graphs

Patient319 has name "John Doe".
Patient319 has systolic blood pressure observation Obs_001.
Obs_001 value was 120.
Obs_001 units was mmHg.

English assertions:

RDF assertions ("triples"): RDF graph:

17

Why does this matter?

• Easy to represent any data

• Easy to incorporate any data model
– Hierarchical, relational, graph, etc.

Great for data integration!

18

Hierarchical data model in RDF

19

Relational data model in RDF

ID fname addr

7 Bob 18

8 Sue 19

See W3C Direct Mapping of Relational Data to RDF:
http://www.w3.org/TR/rdb-direct-mapping/

ID City State

18 Concord NH

19 Boston MA

People Addresses

http://www.w3.org/TR/rdb-direct-mapping/

20

Why does this matter?

• Easy to map any data format to RDF
– E.g., XML, JSON, CSV, SQL tables, etc.

21

Easy to map from other formats?

• XML:
– Except cyclic graphs

• JSON:
– Except cyclic graphs

✔
✔

22

#3: RDF captures information
– not syntax

• RDF is format independent

• There are multiple RDF syntaxes: Turtle,
N-Triples, JSON-LD, RDF/XML, etc.

• The same information can be written in
different formats

23

RDF examples

Same information!

RDF (Turtle)
@prefix ex: <http://example/ex/> .
@prefix loinc: <http://loinc.org/> .
@prefix v: <http://example/v/> .

ex:obs_001 a v:Observation ;
 v:code loinc:3727­0 ;
 v:display "BPsystolic, sitting" ;
 v:value 120 ;
 v:units v:mmHg .

RDF graph

RDF (N-Triples)
<http://example/ex/obs_001> <http://www.w3.org/1999/02/22­rdf­syntax­ns#type> <http://example/v/Observation> .
<http://example/ex/obs_001> <http://example/v/code> <http://loinc.org/3727­0> .
<http://example/ex/obs_001> <http://example/v/display> "BPsystolic, sitting" .
<http://example/ex/obs_001> <http://example/v/value> "120"^^<http://www.w3.org/2001/XMLSchema#integer> .
<http://example/ex/obs_001> <http://example/v/units> <http://example/v/mmHg> .

24

RDF examples
RDF (JSON-LD)

{
 "@id": "http://example/ex/obs_001",
 "@type": "http://example/v/Observation",
 "http://example/v/code": {
 "@id": "http://loinc.org/3727­0"
 },
 "http://example/v/display": "BPsystolic, sitting",
 "http://example/v/units": {
 "@id": "http://example/v/mmHg"
 },
 "http://example/v/value": 120
}

RDF graph

RDF (RDF/XML)
<?xml version="1.0" encoding="utf­8"?>
<rdf:RDF xmlns:ex="http://example/ex/" xmlns:loinc="http://loinc.org/"
 xmlns:rdf="http://www.w3.org/1999/02/22­rdf­syntax­ns#" xmlns:v="http://example/v/">
 <rdf:Description rdf:about="http://example/ex/obs_001">
 <rdf:type rdf:resource="http://example/v/Observation"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://example/ex/obs_001">
 <v:code rdf:resource="http://loinc.org/3727­0"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://example/ex/obs_001">
 <v:display>BPsystolic, sitting</v:display>
 </rdf:Description>
 <rdf:Description rdf:about="http://example/ex/obs_001">
 <v:value rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">120</v:value>
 </rdf:Description>
 <rdf:Description rdf:about="http://example/ex/obs_001">
 <v:units rdf:resource="http://example/v/mmHg"/>
 </rdf:Description>
</rdf:RDF>

Same

info!

Why does this matter?

• Emphasis is on the meaning (where it
should be)

• RDF can be used to capture the meaning
of other data formats/languages:
– Any data format can be mapped to RDF to

capture its meaning
– RDF acts as a substrate language

26

Different source languages, same RDF

OBX|1|CE|3727­0^BPsystolic,
sitting||120||mmHg|

<Observation
 xmlns="http://hl7.org/fhir">
 <system value="http://loinc.org"/>
 <code value="3727­0"/>
 <display value="BPsystolic, sitting"/>
 <value value="120"/>
 <units value="mmHg"/>
</Observation>

HL7 v2.x FHIR

RDF graph

Maps to

Maps to

27

Why does this matter?

• Precise meaning of data in other
languages/formats can be captured in a
consistent, format-independent way

• Important for data integration

28

Captures meaning, not syntax?

• XML:
– Syntax only

• JSON:
– Syntax only

✘

½

29

#2: Multiple data models and
vocabularies can be easily combined

and interrelated

• RDF is multi-schema friendly*
– (In this talk, schema == data model,

i.e., the shape of the data)

• Multiple data models/schemas and
vocabularies can peacefully co-exist,
semantically connected

*A/k/a schema-promiscuous, schema-flexible, schema-less, etc.

30

Multi-schema friendly

• Blue App has model

Country Address FirstName LastName Email

City ZipCode

Blue Model

31

Multi-schema friendly

• Red App has model

HomePhone Town ZipPlus4 FullName Country

Red Model

32

Multi-schema friendly

• Merge RDF data

• Same nodes (URIs) join automatically

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue Model

Country

33

Multi-schema friendly

• Add relationships and rules

• (Relationships are also RDF)

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue Model

Country

subClassOf

sameAs
hasLast

hasFirst

34

Multi-schema friendly

• Later add Green model
(Using Red & Blue models)

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

Country

subClassOf

sameAs
hasLast

hasFirst

Multiple models peacefully coexist

35

Multi-schema friendly

• What the Blue app sees:

– No difference!

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

CountryCountry Address FirstName LastName Email

City ZipCode

Blue Model

Country

36

Multi-schema friendly

• What the Red app sees

– No difference!

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

CountryHomePhone Town ZipPlus4 FullName Country

Red Model

37

Multi-schema friendly

• What the Green app sees

– No difference!

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

CountryHomePhone Town ZipPlus4 Country FirstName LastName Email

Green Model

Country

38

Why is this important?

• Multiple data models and vocabularies can be:
– added dynamically

– used together harmoniously

• This is critical in domains that involve many or changing data
models/vocabularies
– E.g., standard + non-standard models/vocabularies

• Even standards are not static!
– Standards are continually revised or they become obsolete

Unified Medical Language System (UMLS) includes over 100
standard vocabularies and millions of concepts!

39

Easy to merge data?

• XML:
– Schemas compete to be "on top"
– Meaningful merge requires new schema and

manual mapping

• JSON:
– A little easier than with XML
– But meaningful merge still requires new model

and manual mapping

✘
✘

#1: RDF enables smarter data use and
automated data translation

• RDF enables inference

• Inference derives new assertions from old
– "Entailments"

Inference example

• If you know:
?x a v:MitralValve .
v:MitralValve rdfs:subClassOf v:HeartValve .

• Then you can infer:
?x a v:HeartValve .

Why is this important?

• Smarter queries and data use
– Query for v:HeartValve surgeries can find

v:MitralValve surgeries

43

Inference example: sameAs

• If you know: Town

• You can infer: City (or vice versa)

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

subClassOf

sameAs
hasLast

hasFirst

44

Inference example: composition

• If you know: FirstName + LastName

• You can infer: FullName

– But not necessarily vice versa

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

subClassOf

sameAs
hasLast

hasFirst

45

Facilitates smarter queries?

• XML:
– No inference

• JSON:
– No inference

✘
✘

Why is this important?

• Data can be automatically transformed
between different data models and
vocabularies
– E.g., db:DB00945 => v:aspirin
– Red Model data + Blue Model data => Green

Model data

Very helpful for data integration!

47

Inference example:
data transformation

• If you know: Red Model data + Blue Model data

• You can infer: Green Model data

HomePhone Town ZipPlus4 FullName Country Address FirstName LastName Email

City ZipCode

Red Model Blue ModelGreen Model

Country

48

Facilitates data transformations?

• XML:
– Not by inference, but tools are

available

• JSON:
– Not by inference, but tools are

available ½

½

49

Weaknesses of RDF

• RDF tools are less mature;
expertise is less widespread

• RDF has some annoyances:
– "Blank nodes" have subtleties that add

complication (Best to limit their use)
– URI allocation – can be a hassle

• Weaknesses should be understood, but are
not show stoppers

Conclusions

• RDF provides key benefits that distinguish it from
other frequently used information representations

• RDF is best for problems that involve:
– Large-scale information integration

– Semantically connecting diverse vocabularies and
data models

– Changing vocabularies and data models

– Inference and information transformation

51

Questions?

52

BACKUP SLIDES

Key things you need to know about RDF

#5: RDF is self describing
– RDF uses URIs as identifiers

#4: RDF is easy to map from other data representations
– RDF data is made of assertions

#3: RDF captures information – not syntax
– RDF is format independent

#2: Multiple data models and vocabularies can be easily
combined and interrelated

– RDF is multi-schema friendly

#1: RDF enables smarter queries and automated data translation
– RDF enables inference

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Matt Vagnoni, CTO mvagnoni@knowmed.com www.knowmed.com
	Slide 52
	Slide 53

