Key Things You Need to Know About RDF and Why They Are Important

David Booth, Ph.D.
HRG & Rancho BioSciences
david@dbooth.org

Smart Data Conference
18-Aug-2015

Latest version of these slides:
http://dbooth.org/2015/key/
RDF is fundamentally different from other data formats – XML, JSON, etc. This presentation explains why.

But first, some background . . .
Comparing RDF with XML or JSON

WARNING: Improper comparison!

- XML, JSON or any other format *could* be used in special ways to achieve all of RDF's features
 - But that isn't how they are normally used
- This talk compares RDF with XML and JSON *as they are normally used*
What is RDF?

• "Resource Description Framework"
 – *But think "Reusable Data Framework"
• Language for representing information
• International standard by W3C
• Mature: 10+ years
• Used in many domains, including biomedical and pharma
RDF Assertions (a/k/a "Triples")

PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>
ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .
PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .
RDF Assertions (a/k/a "Triples")

Equivalent English sentence:
Patient319 has full name "John Doe".

PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .
RDF Assertions (a/k/a "Triples")

Equivalent English sentence: Patient319 has a systolic blood pressure observation obs_001.

PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .

ex:obs_001 v:value 120 .

ex:obs_001 v:units v:mmHg .
RDF Assertions (a/k/a "Triples")

Equivalent English sentence: *Obs_001 has a value of 120.*
RDF Assertions (a/k/a "Triples")

PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

Equivalent English sentence:
Obs_001 has units of mmHg.
RDF Assertions (a/k/a "Triples")

PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

Sets of assertions form an RDF graph . . .
PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>
ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .
PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

RDF graph
PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .

ex:obs_001 v:value 120 .

ex:obs_001 v:units v:mmHg .
PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>
ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .
PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .

RDF Graph
What is RDF good for?

• Large-scale information integration
• Semantically connecting diverse data models and vocabularies
• Translating between data models and vocabularies
• Smarter data use

Let's see why . . .
Key things you need to know about RDF

#5: RDF is self describing
 – RDF uses URIs as identifiers

#4: RDF is easy to map from other data representations
 – RDF data is made of assertions

#3: RDF captures information – not syntax
 – RDF is format independent

#2: Multiple data models and vocabularies can be easily combined and interrelated
 – RDF is multi-schema friendly

#1: RDF enables smarter data use and automated data translation
 – RDF enables inference
#5: RDF is self describing

• Uses URIs as identifiers
 http://www.drugbank.ca/drugs/DB00945
#5: RDF is self describing

- Uses URIs as identifiers

http://www.drugbank.ca/drugs/DB00945

drugbank: DB00945

Often abbreviated in RDF:
PREFIX drugbank: <http://www.drugbank.ca/drugs/>
drugbank:DB00945
#5: RDF is self describing

- Uses URIs as identifiers

http://www.drugbank.ca/drugs/DB00945
Why is this important?

• Terms, data models, vocabularies, etc., can be linked to definitions
• Definition can be found by any party
 – Reduces ambiguity
• Aids in bootstrapping new terms toward standardization

Supports standards and innovation
Terms are self describing?

• XML:
 – Can be just as good as RDF if namespaces are properly used
 – In practice, namespaces are not always used or clickable to definitions

• JSON:
 – In theory, could be used like RDF
 – In practice, almost never done
#4: RDF is easy to map from other data representations

- RDF represents information as triples
- Triples form a graph
PREFIX ex: <http://.../data/>
PREFIX v: <http://.../vocab/>

ex:patient319 v:fullName "John Doe" .
ex:obs_001 v:value 120 .
ex:obs_001 v:units v:mmHg .
Why does this matter?

• Easy to represent any data model
 – Hierarchical, relational, graph, etc.
• Easy to map any data format to RDF
 – E.g., XML, JSON, CSV, SQL tables, etc.

Great for data integration!
Hierarchical data model in RDF
Relational data model in RDF

See W3C Direct Mapping of Relational Data to RDF:
http://www.w3.org/TR/rdb-direct-mapping/
Combined: Hierarchical + Relational

ex:patient319

v:fullName
"John Doe"

v:systolicBP
ex:obs_01
v:value
120
v:units
v:mmHg

owl:sameAs

<!-- Diagram content -->
Combined: Hierarchical + Relational
Combined: Hierarchical + Relational
Easy to map from other formats?

• XML:
 – Graphs are possible but messy

• JSON:
 – Except cyclic graphs

1/2
#3: RDF captures information – not syntax

- RDF is format independent
- There are multiple RDF syntaxes: Turtle, N-Triples, JSON-LD, RDF/XML, etc.
- The same information can be written in different formats
- Any data format can be mapped to RDF
RDF examples

RDF (Turtle)

@prefix ex: <http://example/ex/> .
@prefix loinc: <http://loinc.org/> .
@prefix v: <http://example/v/> .

ex:obs_001 a v:Observation ;
 v:code loinc:3727-0 ;
 v:display "BP systolic, sitting" ;
 v:value 120 ;
 v:units v:mmHg .

RDF (N-Triples)

<http://example/ex/obs_001> <http://example/v/units> <http://example/v/mmHg> .

Same information!
RDF examples

RDF (JSON-LD)

```json
{
    "@id": "http://example/ex/obs_001",
    "@type": "http://example/v/Observation",
    "http://example/v/code": {
        "@id": "http://loinc.org/3727-0"
    },
    "http://example/v/display": "BP systolic, sitting",
    "http://example/v/units": {
        "@id": "http://example/v/mmHg"
    },
    "http://example/v/value": 120
}
```

RDF (RDF/XML)

```xml
<?xml version="1.0" encoding="utf-8"?>
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:v="http://example/v/">
    <rdf:Description rdf:about="http://example/ex/obs_001">
        <rdf:type rdf:resource="http://example/v/Observation"/>
    </rdf:Description>
    <rdf:Description rdf:about="http://example/ex/obs_001">
        <v:code rdf:resource="http://loinc.org/3727-0"/>
    </rdf:Description>
    <rdf:Description rdf:about="http://example/ex/obs_001">
        <v:display>BPsystolic, sitting</v:display>
    </rdf:Description>
    <rdf:Description rdf:about="http://example/ex/obs_001">
        <v:value rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">120</v:value>
    </rdf:Description>
    <rdf:Description rdf:about="http://example/ex/obs_001">
        <v:units rdf:resource="http://example/v/mmHg"/>
    </rdf:Description>
</rdf:RDF>
```

Same info!
Different source formats, same RDF

HL7 v2.x

```
OBX|1|CE|3727-0^BPsystolic, sitting||120||mmHg|
```

Maps to

FHIR

```
<Observation
  xmlns="http://hl7.org/fhir">
  <system value="http://loinc.org"/>
  <code value="3727-0"/>
  <display value="BPsystolic, sitting"/>
  <value value="120"/>
  <units value="mmHg"/>
</Observation>
```

Maps to

RDF graph
Why does this matter?

• Emphasis is on the **meaning** (where it should be)
• RDF acts as a **universal information representation**
 – Different formats can be exchanged with the same meaning
RDF as a universal information representation

```
<Observation ...>
  <system value="http://loinc.org"/>
  <code value="3727-0"/>
  ...
</Observation>
```

```
OBX|1|CE|3727-0^BP systolic, sitting||120||mmHg|
```
Why does this matter?

• Helps avoid the bike shed effect in standards, a/k/a Parkinson's Law of Triviality
 – Standards committees often spend hours arguing over syntax and naming -- irrelevant to computable information content
Bike shed effect
a/k/a Parkinson's Law of Triviality

Organizations spend disproportionate time on trivial issues. -- C.N. Parkinson, 1957

1. Nuclear Plant
 Cost: $28,000,000
 Discussion: 2.5 minutes

2. Bike Shed
 Cost: $1,000
 Discussion: 45 minutes
Captures meaning, not syntax?

• XML:
 – Syntax only

• JSON:
 – Syntax only

1/2
#2: Multiple data models and vocabularies can be easily combined and interrelated

- RDF is multi-schema friendly*
- Multiple data models/schemas and vocabularies can peacefully co-exist, semantically connected

*A/k/a schema-promiscuous, schema-flexible, schema-less, etc.
Multi-schema friendly

- Blue App has model

![Diagram of Blue Model with attributes Country, Address, FirstName, LastName, Email, City, and ZipCode]
Multi-schema friendly

- Red App has model
Multi-schema friendly

• Merge RDF data
• Same nodes (URIs) join automatically
Multi-schema friendly

- Add relationships and rules
- (Relationships are also RDF)
Multi-schema friendly

- Later add Green model
 (Using Red & Blue models)

Multiple models peacefully coexist
Multi-schema friendly

- Blue app sees Blue model
Multi-schema friendly

- Red app sees Red model
Multi-schema friendly

- Green app sees Green model
Different views for different systems
Different views for different systems
Different views for different systems
Why is this important?

• Multiple data models and vocabularies can be:
 – added dynamically
 – used together harmoniously
• This is critical in domains that involve many or changing data models/vocabularies
• Even standards change!
 – Standards are revised or they become obsolete
Easy to combine and relate data?

• XML:
 – Schemas compete to be "on top"
 – Meaningful merge requires new schema and manual mapping

• JSON:
 – A little easier than with XML
 – But meaningful merge still requires new model and manual mapping

✘

✘
#1: RDF enables smarter data use and automated data translation

- RDF enables inference
- Inference derives new assertions from old
 - "Entailments"
- Query for v:HeartValve surgeries can find v:MitralValve surgeries
Inference example

- **If you know:**

  ```
  ?x a v:MitralValve .
  v:MitralValve rdfs:subClassOf v:HeartValve .
  ```
Inference example

- **If you know:**
 \(?x \text{ a } \text{v:MitralValve} .
 \text{v:MitralValve rdfs:subClassOf v:HeartValve} .

- **You can infer:**
 \(?x \text{ a } \text{v:HeartValve} .

Inference example: sameAs

- **If you know:** Town
- **You can infer:** City (or vice versa)
Inference example: composition

- **If you know:** FirstName + LastName
- **You can infer:** FullName
 - But not necessarily vice versa
Why is this important?

• Smarter data use
 – Query for v:HeartValve surgeries can find v:MitralValve surgeries
Facilitates smarter queries?

- **XML:**
 - No inference

- **JSON:**
 - No inference
Why is this important?

- Data can be automatically translated between different data models and vocabularies
 - E.g., db:DB00945 => v:aspirin
 - Red Model data + Blue Model data => Green Model data

Very helpful for data integration!
Inference example: composition

- If you know: FirstName + LastName
- You can infer: FullName
 - But not necessarily vice versa
Inference example: data translation

- If you know: Red Model data + Blue Model data
- You can infer: Green Model data
Translation as inference
Translation as inference

Translate

?chcsPatient a chcs:Patient

chcs:52 (CHCS patient class)

chcs:patient-52

?chcsPrescription a taps:generatedFrom

chcs:sig-52

"1 TAB Q6H PRN PAIN 12 RF0"

&_fhirPatient a fhir:Patient

_fhir:MedicationPrescription (FHIR prescription class)

_fhirPatient a fhir:Patient

_fhir:patient

_fhir:MedicationPrescription

_fhir:dispense

_fhir:dosageInstruction

_fhir:quantity

_fhir:numberOfRepeatsAllowed

_fhir:doseQuantity fhir:timingSchedule fhir:quantity

_fhir:repeat

_fhir:quantity

"0"

_fhir:repeate

_fhir:repeat

_fhir:when

_fhir:code

_fhir:value

"Q6H"

_fhir:value

"12"

_fhir:value

"TAB"

_fhir:value

"1"
Facilitates data translations?

• XML:
 – Not by inference, but tools are available

• JSON:
 – Not by inference, but tools are available
Key things you need to know about RDF

#5: RDF is self describing
- RDF uses URIs as identifiers

#4: RDF is easy to map from other data representations
- RDF data is made of assertions

#3: RDF captures information – not syntax
- RDF is format independent

#2: Multiple data models and vocabularies can be easily combined and interrelated
- RDF is multi-schema friendly

#1: RDF enables smarter queries and automated data translation
- RDF enables inference
Weaknesses of RDF

• RDF tools are less mature; expertise is less widespread

• RDF has some annoyances:
 – "Blank nodes" have subtleties that add complication (Best to limit their use)
 – URI allocation – can be a hassle

• Weaknesses should be understood, but are not show stoppers
Conclusions

• RDF provides key benefits that distinguish it from other frequently used information representations

• RDF is best for problems that involve:
 – Large-scale information integration
 – Semantically connecting diverse vocabularies and data models
 – Changing vocabularies and data models
 – Inference and data translation
Questions?
BACKUP SLIDES
Key things you need to know about RDF

#5: RDF is self describing
 - RDF uses URIs as identifiers

#4: RDF is easy to map from other data representations
 - RDF data is made of assertions

#3: RDF captures information – not syntax
 - RDF is format independent

#2: Multiple data models and vocabularies can be easily combined and interrelated
 - RDF is multi-schema friendly

#1: RDF enables smarter queries and automated data translation
 - RDF enables inference
If time permits . . .

• Ivan Herman's Semantic Web tutorial:
 http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/Slides.pdf